Skip Navigation
SBIR/STTR

Continued Development of Environmentally COnscious "ECO" Transport Aircraft Concepts as Hybrid Electric Distributed Propulsion Research Platforms, Phase II

Active Technology Project

Project Introduction

ESAero's vast TeDP and HEDP-specific experience, Helden Aerospace's distributed propulsion airframe integration effects & CFD analysis experience, and Rolls-Royce's propulsion and power, thermal management, and fault tolerant microgrid systems design experience will be leveraged to develop the ECO-150 and ECO-80 concepts as Vision Vehicles which can become research platforms to investigate the potential merits of novel technologies and stand as well-defined and reputable reference vehicle benchmarks. The ECO concepts will represent rational approaches to incorporating multiple NASA technologies in a synergistic manner for the 2030-2040 timeframe, including distributed energy management, embedded fan split-wing configuration for powered lift and improved aerodynamic efficiency and structural rigidity, ducted radiator cooling systems, hybrid power supplementation, and tail reduction via propulsive aircraft control. Complete design iterations of the ECO-150 and ECO-80 concepts will incorporate lessons learned relating to the following objectives and cross-check them with the existing vehicle design, competing discipline requirements, and detailed component integration: (1) Advance the TeDP system design through non-superconducting, high power microgrid design and detailed motor/generator sensitivity analyses; (2) Advance the TMS design with a new TMS architecture for redundancy and by applying thermal capacitance to achieve transient performance targets; (3) Take credit for the propulsion system?s utility as an aircraft control mechanism and address any new design requirements this imposes on the aircraft; (4) Investigate hybrid power supplementation and establish a roadmap for the sizing and synthesis of HEDP architectures; (5) Continue the high-fidelity aero-propulsion CFD study to improve the high lift and cruise efficiency of the split-wing design, and use the CFD results to validate and calibrate ESAero?s analytical propulsion duct models. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

^