Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Deployable Ku/Ka/W Tri-Band Cylindrical Parabolic Antenna

Completed Technology Project
116 views

Project Description

Final Summary Chart Image
MMA has proposed a technical approach creates a highly simplistic antenna architecture by taking advantage of natural mechanics of high-strain composite materials to create a 1D parabolic reflector surface. At smaller scales (1-2 m2), the architecture allows continuous reflector surfaces for ESPA-class spacecraft, while at larger scales a modular architecture is taken advantage of to produce much larger apertures without requiring comparatively large spacecraft. The effort will develop a large aperture at Ku, Ka, and W frequencies using rollable shell surfaces that combine the surface accuracy of rigid reflectors with the packaging advantages of flexible reflectors. Developing a stowable, “morphing”, high-strain composite reflector surface with sufficient surface roughness and position knowledge for frequencies up to 94 GHz will enable large apertures with reduced stowed envelope and can dramatically reduce the hardware, instrument and mission implementation costs. Originally inspired by the shape of a beam being deflected under load, MMA is using analysis and lab testing to determine the prescribed loading configuration capable of deflecting a semi-rigid member into a parabolic curve. By using the mechanics of bending rather than molding and manufacturing to prescribe the reflector’s shape, the system provides a repeatable method of forming a parabolic surface. This architecture lends itself to a structurally simple system, providing high reliability and low complexity. Phase I efforts demonstrated through analysis and prototyping that loading conditions exist for isotropic beams to form a surface closely matching a parabola, while RF performance simulations verified the reflector’s ability to perform with minimal gain losses up to 95 GHz. The phase II effort will build upon this early development to design, build, and test a deployable tri-band antenna system. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^