Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Multiphase Modeling of Solid Rocket Motor Internal Environment

Completed Technology Project
640 views

Project Description

Final Summary Chart Image
Solid rocket motor (SRM) design requires detailed understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and to assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag in SRMs as they rely on a Lagrangian particle approach that are only capable of predicting the location of accumulation. In Phase I, a multiphase framework comprising of gas-phase, a dense slag-phase, and Lagrangian particles representing aluminum and alumina was developed and demonstrated. Phase II effort will focus on extending the developed approach by a) incorporating improved transport and thermal properties of slag, b) improving numerical approach for solving transport of gas and slag-phase in SRM environment, c) enhancing the coupled flow simulation capabilities including accelerated frame of reference to predict slag dynamics and d) providing detailed verification and validation of sub-models and overall simulation capabilities. The tools developed will be of great use in designing and developing next generation SRMs and effect of slag on thrust oscillations, coning and debris prediction. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^