Skip Navigation
SBIR/STTR

Efficient On-board Lamberts Solution for DSM, Phase I

Active Technology Project

Project Introduction

Distributed Spacecraft Missions (DSMs) such as constellations, formation-flying missions, and fractionated missions provide unique scientific and programmatic benefits. Distributed mission architectures allow for multipoint in-situ measurements, multi-angle viewpoints, and considerably improved understanding of the connections between separately measured phenomena and their time variations. DSMs are particularly important for NASA's efforts to better understand Sun-Earth interactions, space weather, and heliophysics, and they deliver operational and scientific benefits for missions to small bodies and planetary satellites as well. In all cases these missions impose unique operational requirements that can stress ground tracking stations and mission operators by increasing the number of vehicles or create challenges when establishing sufficient communications contacts. These DSM challenges can be addressed by employing automation both on board and on the ground. Moving autonomous operations on board the spacecraft mitigates both the operational burden of such missions as well as the ground segment congestion faced in these scenarios. Advanced Space proposes developing a real-time (RT), open source, embedded software (ESW) application for on-board maneuver planning and relative orbit determination that is compatible with NASA's Core Flight System (cFS) and that enables DSMs to operate with increased autonomy in their spacecraft operations. In combination with cFS, an on-board software engine capable of employing a linearized solution of Lambert's problem will yield a powerful and enabling application for a wide variety of missions using distributed spacecraft arrangements. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

^