Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

A Ferroelectric Semiconductor Absorber for Surpassing the Shockley-Queisser Limit

Completed Technology Project
57 views

Project Description

A Ferroelectric Semiconductor Absorber for Surpassing the Shockley-Queisser Limit, Phase I Briefing Chart Image
Physical Sciences Inc. (PSI) proposes to develop new solar cells based on a ferroelectric semiconductor absorber material that can yield a 30% increase in efficiency and a 20% increase in specific power compared with current triple-junction III-V cells. These gains will be realized by exploiting a unique charge separation mechanism in ferroelectrics that enables open-circuit voltages many times the band gap, leading to maximum power conversion efficiencies exceeding the conventional Shockley-Queisser limit (33%). PSI and team members will create photovoltaic cells based on Earth-abundant SnS stabilized in a ferroelectric state by epitaxial strain engineering. By combining above-gap cell voltages with the high absorption coefficient (45% is anticipated to be achievable. Importantly, these cells will also offer improved radiation resistance due to the reduced carrier diffusion lengths required by the unique ferroelectric charge separation mechanism. During Phase I, PSI, guided by first-principles calculations conducted by the PARADIM Center at Cornell University, will demonstrate room-temperature ferroelectric ordering in SnS through epitaxial strain engineering. During Phase II, PSI and Lawrence Berkeley National Laboratory will demonstrate the potential of the proposed absorber by achieving above-band gap open-circuit voltages in prototype cells. During a Phase III effort, the efficiency of these cells will be increased to a target value of 45% through reduction of intrinsic defects, leading to substantial improvements in cell size, weight, and power output. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^