Skip Navigation

Radiation Hardened High Speed Integrated Circuits SERDES I/O for Extreme Operating Environments, Phase I

Completed Technology Project

Project Introduction

Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments subject to radiation, extreme temperatures, vibration and shock. Semiconductor technologies capable of meeting these demanding requirements tend to have limited capabilities, are expensive, and are not easily configured for specific mission requirements. Leading-edge applications will benefit from the ability to implement high speed interconnect protocols between host processors and system slaves, such as sensors, actuators, power managers, imagers and transceivers. The development of a Radiation Hardened Serializer/Deserializer (SERDES) embedded macro is proposed for insertion into digital integrated circuits (ICs) suitable for scalable single and multi-core processors, special purpose logic functions and scalable memory blocks on a space-qualified, radiation hardened integrated circuit digital fabric. A NASA-funded Structured ASIC architecture is under development at Micro-RDC, capable of meeting space-grade requirements while creating a cost-effective, quick-turn development environment. The SASIC fabric will implement known Radiation-Hardened-By-Design (RHBD) techniques on an advanced 32nm CMOS SOI process, supporting high-density, high-speed low-power implementations. A unique Digital Logic Tile architecture with through-seal-ring connections allows the designer to define single or multi-core processors, dedicated logic functions, scalable memory blocks and user-defined I/Os; all on a single, scalable integrated circuit. The 32nm platform (fabric) development incorporates the RHBD building-blocks (e.g. flip-flops, gates, distributed memory, block memory, I/O) required for the systems designer to implement functional blocks for application-specific requirements. During this project a high speed SERDES physical layer macro will be developed for insertion into more complex digital processing elements. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Closeout

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.