Skip Navigation
SBIR/STTR

Joining of Tungsten Cermet Nuclear Fuel, Phase I

Completed Technology Project

Project Introduction

Nuclear Thermal Propulsion (NTP) has been identified as a critical technology needed for human missions to Mars due to its increased specific impulse (Isp) as compared to traditional chemical propulsion systems. A critical aspect of the program is to develop a robust, stable nuclear fuel. One of the nuclear fuel configurations currently being evaluated is a cermet-based material comprised of uranium dioxide (UO2) particles encased in a tungsten matrix (W). Recently, hot isostatic pressure (HIP) and spark plasma sintering (SPS) processing techniques have been evaluated for producing W cermet-based fuel elements from powder feedstocks. Although both techniques have been used successfully to produce W cermet fuel segments, the fabrication of full-size W cermet elements (>20) has proven to be difficult. As a result, the use of W cermet segments to produce a full-size W cermet fuel element is of interest. However, techniques for joining the segments are needed that will not lower the use temperature, damage the UO2 particles, or compromise the nuclear performance of the fuel. For these reasons, joining of the segments using braze or weld techniques is not desired. Therefore, diffusion bonding techniques will be developed during this investigation for producing full-size nuclear fuel rods from W cermet segments. To promote diffusion during solid state bonding, different refractory metal interfacial coatings will be evaluated. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

^