Skip Navigation
SBIR/STTR

Robust Switching Control for Hypersonic Vehicles, Phase I

Completed Technology Project

Project Introduction

Robust Switching Control for Hypersonic Vehicles, Phase I
Flight in the hypersonic regime is critical to NASA's goals because access to earth orbit and re-entry from orbit to earth or to other planets with atmospheres require flight through this regime. Hypersonic flight poses a wide array of difficulties, including significant guidance and control challenges. For example, flexible airframes and highly integrated airframe and propulsion systems common in scramjet designs mean that aerodynamic and propulsion control are closely coupled. Control laws for hypersonic vehicles must also handle a very broad range of dynamics as hypersonic vehicles often operate from subsonic through hypersonic speeds and possibly with multiple propulsion modes for different speed ranges. Actuator saturation and significant models uncertainty also pose control challenges, and demanding energy management requirements make guidance and trajectory optimization challenging tasks as well. The proposed research will develop innovative control strategies to address the challenges of hypersonic flight. These will be based on recent advances in switching control methods that provide large stable regions and disturbance rejection guarantees in the presence of actuator saturation. The proposed control methods will ultimately be integrated with advanced guidance approaches for hypersonic vehicles developed by Barron Associates. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^