Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I

Completed Technology Project
374 views

Project Description

Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I
While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources typically lack the ultra-narrow (<50 kHz), ultra-stable output spectrum required for use in applications such as Doppler shift measurements of the tropospheric winds. Furthermore, similar sources which operate at 2.0 microns (a preferred wavelength for space-based atmospheric measurements) are simply unavailable. To fill this need, nLight proposes the parallel development of 1.5 and 2.0 micron injection seeding sources based on our well-established, wavelength-scalable, industry-leading InP semiconductor laser design. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^