Non-NASA commercial applications share the same benefits. Utilizing PEMEC technology to purify an inert gas stream of helium, reclaiming it, allows other Government agencies, private space companies, commercial space ventures, launch providers, and vehicle/system developers to benefit from cost savings. Helium, a non-renewable commodity, factors in the cost to develop and test newly designed rocket engines/systems and to test/maintain currently developed engines/systems. Cost savings from our technology allows more funds to be applied in the development and testing of these new rocket engines and systems/technologies, while minimizing the effects of helium cost increases. These savings allow for a bold new commercial approach that invests in the building blocks of a more capable method of space exploration and national defense. Millions in savings can be applied to various Government and commercial testing and design programs instead of helium operating costs associated with those programs. Other non-NASA commercial applications can also include hybrid systems that not only reclaim helium, but also provide electrical power and water by reclaiming hydrogen. This technology will prove highly beneficial to those organizations developing both manned and unmanned planetary landers. PEMECs are an attractive option for purifying inert gas streams containing hydrogen as an impurity because they can be operated efficiently in two methods, which enable separation of hydrogen from the inert gas stream. PEMECs can be operated in a galvanic cell mode where useful electricity can be obtained or, in an electrolytic mode, where the PEMEC is attached to an external power source. In the latter case, hydrogen is separated from the inert stream by electrically driving hydrogen ions across a membrane. Utilizing this technology will significantly reduce vented GHe into the atmosphere at all NASA test sites where helium is consumed in rocket engine testing and will allow the reclamation of GHe for future testing and launch services. This cost-saving technology will save NASA millions of dollars in helium costs over the course of each developmental/test program. Cost savings from our technology allows more funds to be applied to the development and testing of new rocket engines/rocket engine designs, instead of the helium required to test those engines, while minimizing the effects of helium cost increases. Further commercial applications of this technology will allow reclamation of unused hydrogen from the system. This potential NASA application can be used to generate power and water on future lunar vehicles while reclaiming on-board GHe. Our proposed technology allows NASA to continue using helium as a standard purge gas, while reducing operational costs.
More »