Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Textile Strain Measurement System

Completed Technology Project
151 views

Project Description

Final Summary Chart Image
The use of textile devices for spacecraft structures and deceleration provides significant stowed versus deployed volume and mass advantages. However, the long-standing problem with textile devices is the fact that measurement of physical and functional properties, especially during deployment and dynamic events, has been incredibly difficult if not impossible. Generally speaking, the sensors used to measure the textile behaviors have been of sufficient mass/stiffness/wiring/etc. as to alter the base behavior of the material being measured. Current evaluations of stress in textile structures such as parachutes, parafoils, inflatable shelters, etc. rely heavily on analytical estimation and empirical “go/no go” test results without adequate means of data collection to validate or improve simulations. The current concept for this proposal, hereinafter referred to as the Textile Strain Measurement System or TSMS, includes design of a direct measurement data recorder, with size and mass goals that do not influence the textile structure's natural movement and dynamic characteristics. Additionally, the proposed effort includes investigation and characterization of various strain sensitive materials suitable for non-invasive application to previously constructed textile assemblies, with initial focus on Aerodynamic Decelerator Systems (ADS), to allow dynamic stress measurement of flexible structures. Phase I resulted in the planned technology at TRL 3 and delivered a lab prototype of the data recorder with test samples of sensor-infused parachute material. Phase II, when selected, would progress TSMS to at least TRL 5 including fully functional hardware examples for use on free-flying inspection platforms during parachute operation including deployment and inflation. It is our intention to add an accelerometer as an additional sensor during Phase II. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^