Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Innovative, Rapidly Regenerable, Structured Trace-Contaminant Sorbents Fabricated Using 3D Printing

Completed Technology Project
392 views

Project Description

Final Summary Chart Image
The NASA objective of expanding the human experience into the far reaches of space requires regenerable life support systems. This proposal addresses the fabrication of structured (monolithic), carbon-based trace-contaminant (TC) sorbents for the space suit used in Extravehicular Activities (EVAs). The proposed innovations are: (1) the use of thin-walled, structured carbon TC sorbents fabricated using three-dimensional (3D) printing; and (2) the patented low-temperature oxidation step used for the treatment of carbons derived from polymers compatible with 3D printing. The overall objective is to develop a trace-contaminant removal system that is rapidly vacuum-regenerable and that possesses substantial weight, size, and power-requirement advantages with respect to the current state of the art. The Phase 1 project successfully demonstrated 3D-printing of polymer precursors, along with carbonization and activation to produce monoliths with excellent shape, dimensional and ammonia adsorption/desorption properties. The Phase 2 objectives are: (1) to optimize sorbent properties and performance; (2) to design, construct, test, and deliver two full-scale TC sorbent prototypes; to provide guidelines for their integration with the PLSS. This work will be accomplished in six tasks: (1) Sorbent Development and Optimization; (2) Subscale Sorbent Testing at UTC Aerospace Systems; (3) Prototype Design; (4) Prototype Construction; (5) Prototype Testing; and (6) System Evaluation. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^