Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Compressed Sensing for Space-Based High-Definition Video Technologies

Completed Technology Project
98 views

Project Description

Compressed Sensing for Space-Based High-Definition Video Technologies
Space-based imaging sensors are important for NASA's mission in both performing scientific measurements and producing literature and documentary cinema. The recent proliferation of high-definition capture devices and displays (HDTV) provide the general public with first-hand human experiences hundreds miles above sea level in brilliant detail. The recent IMAX film "Hubble," which features one of the final space shuttle missions to repair the orbital telescope, is a prime example. The core of current space-based video capture devices consist of digital imaging sensors. Unfortunately, the harsh conditions of space limit the lifespan of all the imaging sensors, in addition to other electronics. Consequently, NASA is seeking innovative technologies for space-based applications to extend the operational life of these systems to three years or more. In this SBIR project, we propose to investigate robust image reconstruction based on novel signal processing techniques in the vein of compressed sensing (CS) to mitigate pixel damage to the point that is imperceptible by the human eye. Specifically, this proposal is a response to the solicitation for radiation-hardened programmable encoding technology as an identified mid-term NASA solution. CS is a recently introduced novel framework that goes against the traditional data acquisition paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process that projects the signal onto a small set of vectors incoherent with the sparsity basis. This approach is divided into encoder and decoder stages. We propose performing the encoding in-line with acquisition using a low-SWaP, radiation-tolerant FPGA. The robust reconstruction will occur back on Earth where high-performance GPU-accelerated workstations can be used. A benefit of our solution is that it does not require a modification to the original imaging system. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^