Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

HybridSpectral Radiometer Systems to Support Ocean Color Cal/Val

Completed Technology Project

Project Description

HybridSpectral Radiometer Systems to Support Ocean Color Cal/Val
NASA has an ongoing commitment to collect in situ data with a documented uncertainty in keeping with established performance metrics for vicarious calibration of ocean color satellite sensors and to validate the algorithms for which the remotely-sensed observations are used as input parameters. This proposal seeks funding to develop an in-water "Hybridspectral" capability that combines two differing practices for data collection (multiwaveband and hyperspectral) to satisfy the necessary diversity, accuracy, and precision requirements of future ocean color missions. The result is an evolutionary upgrade of existing state-of-the-art commercial instruments to include spectral sampling capability exceeding current and planned satellite requirements and that operate in optically complex near-shore regions. The benefits of this new sampling capability are an improved ability to accurately separate the biotic and abiotic components of seawater, an improved ocean color mission calibration and validation capability into Case 2 waters, reduced deployment effort, and reduced deployment risks. This SBIR effort proposes to address a wide variety of these requirements with the development of a low-cost system called the Compact Hybridspectral Radiometer (C-HyR) with special focus on two important priorities from the call: 1)Instruments for oceanic, coastal, and fresh water measurements of apparent optical properties; and 2)Hyperspectral (340 – 900 nm) radiometers for use in near-surface profiling. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.