Skip Navigation
Human Research Program

Virtual Human Simulation Framework

Completed Technology Project

Project Description

Virtual Human Simulation Framework
Focused Investigation Project

Long-duration human space flight requires new approaches to translating terrestrial medical technologies for use in space. Level Ex develops medical simulation apps used for physician training and proposes to adapt its simulation framework to the environment and conditions found in spacecraft. Multiple factors impact medical care in space environments including anatomical changes to the human body when exposed to microgravity over long durations, activity differences in microgravity, and spatial limitations. Multiple programs are devoted to studying space medicine, such as a four-week aerospace medicine clerkship at NASA Johnson Space Center and two military residency programs. However, the ultimate method of studying medical procedures in space and training astronauts on these procedures is within an actual environment, such as the International Space Station (ISS), although this is infeasible for all except for those few astronauts assigned to the ISS. Another option is training during a low-gravity parabolic flight but this scenario is expensive and would still lack the ability to induce changes in human physiology that would occur during a long-duration space flight. Thus, there exists a critical need to expand the accessibility of medical research and training through simulated environments that account for space conditions and their impact on the human body. Both NASA and the private sector have worked toward developing capabilities to simulate many health aspects of space flight. These studies and virtual simulations by NASA and third-party vendors, such as within the Digital Astronaut Project and now the Integrated Medical Model Project, have focused on how a specific component of human anatomy and physiology is impacted by long periods in microgravity. Simulations and mathematical models of the heart, eyes, and skeletal structure have been developed to a high degree of fidelity to enable a clearer scientific understanding of human health needed for space flight planning and research. However, simulations to date have a key limitation, in that they are discrete programs that capture only a single individual component of the human system. None of the work to date has been capable of incorporating all of the known research around space health into a cohesive, simulated, and interactive hyper-realistic environment.

To address this need, Level Ex proposes to adapt its real-time medical simulation platform to include the effects of long-duration space flight. Through a significant investment in R&D, the existing Level Ex platform has been developed by a team of top video game/ simulation developers/artists, biomedical engineers, and physicians from around the United States who are expert in the simulation of medical reality in mobile, virtual reality (VR), and augmented reality (AR) environments. Major components include tissue recreation and rendering technology used for high-resolution visualization. Level Ex also applies its extensive experience in building physics-based computational models (such as fluid dynamics) that run in real time and enable medical professionals to practice complex medical procedures based on medical data.

To adapt its current simulation framework to a space medical environment, Level Ex proposed the following project objectives:

(1) Simulate and render the environmental physics of the spacecraft (physical modeling of volume, interiors, mass, temperature, light, radiation, barometric pressure, sound, and gas).

(2) Develop or adapt the virtual human simulation to include anatomical and physiological changes caused by long-duration exposure to space.

(3) Demonstrate the use of medical tool technologies relevant to space flight.

(4) Research and report on existing data simulation gaps and future simulation needs.

More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.