Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Hybrid Approach for Modeling Chemical Kinetics and Turbulence Effects on Combustion-Instability, Phase I

Completed Technology Project

Project Introduction

Hybrid Approach for Modeling Chemical Kinetics and Turbulence Effects on Combustion-Instability, Phase I
Combustion instabilities pose a significant technical risk in the development of liquid and solid rocket motors. Much of the effort in modeling combustion instabilities has focused either on systems-level tools, or use of detailed computational fluid dynamics (CFD) to simulate all the involved processes. The important effects of finite-rate chemical kinetics and turbulence-chemistry interactions have been neglected in combustion instability modeling. In this SBIR project, CFD Research Corporation (CFDRC) will team up with Gloyer-Taylor Laboratories (GTL) to develop a hybrid approach by combining CFD capabilities with a systems-level instability modeling approach, the latter based on the Universal Combustion Device Stability (UCDS) process. These capabilities will be used to quantify the effects of finite-rate chemistry and turbulence-chemistry interactions on combustion instabilities. In Phase I, feasibility of the proposed approach will be demonstrated by combining 2-D Reynolds Averaged Navier Stokes and Large Eddy Simulation computations with the UCDS framework. In Phase II, the instability analysis will be enhanced by coupling: (1) 3-D CFD analysis; and (2) Improved UCDS process with more accurate treatment of boundary conditions and the flame. The proposed approach will enable an accurate combustion instability analysis of rocket motors, gas turbine combustors, and ramjet and scramjet engines. More »

Primary U.S. Work Locations and Key Partners

Technology Transitions

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.