Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Multi-functional Nano-Reinforced Self-Healing Polymer Matrix Composites

Completed Technology Project

Project Description

Multi-functional Nano-Reinforced Self-Healing Polymer Matrix Composites
This Small Business Innovation Research Phase I project seeks to develop self-healing composites using carbon nanofibers in conjunction with encapsulated resin/hardener. Polymer matrix composites offering multiple advantages of lightweight, high strength and stiffness, vibration damping, and corrosion resistance are becoming widely used in aerospace and commercial applications. A primary weakness of structural composites is damage from impact, where resulting microcracks can propagate to allow delamination and/or fiber breakage of the composite, resulting in loss of the excellent physical properties for which composites are selected. Incorporation of carbon nanofibers (CNF) into the polymer matrix, resulting in a significant increase of the composite interphase, has been shown to mitigate microcrack formation. CNF additives in the matrix have also demonstrated improvement in interlaminar mechanical properties, thermal and electrical conductivity, vibration damping, and fire retardancy. A separate promising tool for addressing damage from impact is the emerging class of self-healing materials, having the ability to heal microcracks and restore mechanical and corrosion-resistant properties of the composite. In the proposed effort, a combination of these tools will be investigated to determine the feasibility of incorporating self-healing, while concurrently producing multifunctional improvements in interlaminar shear strength, modulus, fracture toughness, transport properties, fire retardancy and vibration damping. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.