Low dropout regulators are ubiquitous in commercial consumer electronics and automotive systems. A non-hardened version of the regulator we are proposing to develop will be inexpensive to manufacture using high volume commercial CMOS foundries. Our business models show that such a component can be manufactured at a cost per die that is competitive with existing products but without the need for an external compensation capacitor thereby reducing the overall costs and part count of the power management system. If this is confirmed our regulator component has the potential for widespread commercial adoption. We are working with our commercialization partners at On Semiconductor and Honeywell to develop these non-NASA applications. As well as a standalone product, we are developing the low dropout linear regulator as a scalable design that can be included in application specific integrated circuits (ASICs) as a licensed 'IP block'. ASICs are widely used for non-NASA applications by the Department of Defense and aerospace companies. The MESFET-based linear regulator technology has the potential for widespread NASA applications in power management systems exposed to extreme environments. The high radiation tolerance we have demonstrated is attractive for orbital earth science studies as well as lunar and interplanetary missions. Our technology may even be suitable for spacecraft exposed to high radiation environments such as the Europa Jupiter System Mission. Missions to the outer reaches of the solar system that depend on a radiothermal generator are exposed to on-board radiation from the RTG and require the high level of radiation tolerance we expect from the final MESFET regulator component. We expect the MESFET technology to be relatively immune to single event effects and therefore suitable for solar observatories and lunar sensors exposed to solar flares. The MESFET technology can operate over the -196CMore »