There will be many potential terrestrial applications for a Bayesian VO system. Although GPS-IMU systems can work well in open outdoor settings, GPS is degraded or unavailable in indoor settings or in outdoor areas with significant tree cover. A navigation system combining a GPS and an IMU with Bayesian VO could provide continuous operation in all environments. The success of this project should lay the groundwork for low-cost, low-power, light-weight integrated navigation systems for robots and autonomous vehicles operating in a wide range of environments. One potential market for this technology is the Department of Defense (DoD). Congress has given DoD a mandate that by 2020 30% of ground vehicles should be robotic. An accurate, low-cost VO system should allow many of these vehicles to be semi-autonomous, enabling only supervisory control for many missions. Visual Odometry (VO) has played a key role in Mars exploration with the Spirit and Opportunity Mars Exploration Rovers (MERs). However, limitations in onboard computing power severely limit the speed of movement that can be tracked by MERS VO, requiring an order of magnitude reduction in forward progress in area where VO was required. The software developed in this project will leverage current computing technology to implement advanced VO methods that will accurately track much faster rover movements. This will greatly increase exploration productivity. This improvement will become even more significant when exploring the more distant planetary bodies. This project will also investigate whether combining vision with a low-cost, lightweight, low-power Micro-ElectroMechanical System (MEMS) Inertial Measurement Unit (IMU) can produce acceptable accuracy for lunar and planetary exploration. If so, this will facilitate the design of lower-cost, light-weight rovers, which will make it feasible to launch a team of rovers for wide area exploration.
More »