Skip Navigation
SBIR/STTR

Advanced Bayesian Methods for Lunar Surface Navigation, Phase I

Completed Technology Project

Project Introduction

Advanced Bayesian Methods for Lunar Surface Navigation, Phase I
The key innovation of this project will be the application of advanced Bayesian methods to integrate real-time dense stereo vision and high-speed optical flow with an Inertial Measurement Unit (IMU) to produce a highly accurate planetary rover navigation system. The software developed in this project will leverage current computing technology to implement advanced Visual Odometry (VO) methods that will accurately track much faster rover movements. Our fully Bayesian approach to VO will utilize more information from the images than previous methods are capable of using. Our Bayesian VO does not explicitly select features to track. Instead it implicitly determines what can be learned from each image pixel and weights the information accordingly. This means that our approach can work with images that have no distinct corners, which can be a significant advantage with low contrast images from permanently shadowed areas. We expect that the error characteristics of the visual processing with be complementary to the error characteristics of a low-cost IMU. Therefore, the combination of the two should provide highly accurate navigation. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^