Skip Navigation
SBIR/STTR

Scalable ParaView for Extreme Scale Visualization, Phase I

Completed Technology Project

Project Introduction

Scalable ParaView for Extreme Scale Visualization, Phase I
Petscale computing is leading to significant breakthroughs in a number of fields and is revolutionizing the way science is conducted. Data is not knowledge, however, and the challenge has been how to analyze and gain insight from the massive quantities of data that are generated. In order to address the peta-scale visualization challenges, we propose to develop a scientific visualization software that would enable real-time visualization capability of extremely large data sets. We plan to accomplish this by extending the ParaView visualization architecture to extreme scales. ParaView is an open source software installed on all HPC sites including NASA's Pleiades and has a large user base in diverse areas of science and engineering. Our proposed solution will significantly enhance the scientific return from NASA HPC investments by providing the next generation of open source data analysis and visualization tools for very large datasets. To test our solution on real world data with complex pipeline, we have partnered with SciberQuest, who have recently performed the largest kinetic simulations of magnetosphere using 25 K cores on Pleiades and 100 K cores on Kraken. Given that IO is the main bottleneck for scientific visualization at large scales, we propose to work closely with Pleiades's systems team and provide efficient prepackaged general purpose I/O component for ParaView for structured and unstructured data across a spectrum of scales and access patterns with focus on Lustre file system used by Pleiades. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^