Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Propulsion Test Support Analysis with GPU Computing

Completed Technology Project

Project Description

Propulsion Test Support Analysis with GPU Computing
The design, development and staging of tests to certify liquid rocket engines usually require high-fidelity structural, fluid and thermal support analysis. These analyses are crucial to a successful engine test program since pressurization requirements, heat loads, cooling requirements and structural stresses are evaluated. Furthermore, these analyses are utilized to detect anomalies, unsteady pressure pulsations, structural vibrations, resonant modes and unexpected plume impingement zones that may be hazardous to the test stand structure and/or the test article. Such high-fidelity analyses have traditionally been performed on PC-cluster type computational platforms spanning over days/weeks given the complexity of the flowpath and flow regimes typically involved in the testing of liquid rocket engines. In this proposal we exploit the data parallelism of the computational algorithms involved to significantly enhance performance on low-cost high-speed GPU enabled hardware. Such a transition to GPU-based hardware will result in a paradigm shift for compute-intensive propulsion system applications from expensive CPU dominated PC-cluster architectures to economical workstation styled hybrid GPU-CPU systems, while resulting in dramatic decreases in turnaround times. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.