The proposed approach to validation of passive radiation-shielding materials has NASA applications in evaluating the effects of the space environment on multifunctional nanocomposite materials capable of serving both as radiation shields and structural elements. These materials are being developed by International Scientific Technologies, Inc. Several NASA programs will be directly affected as a result of the Phase I and Phase II programs. The Human Research Program (HRP) is tasked with ensuring crew safety on long-duration space missions. Validation of radiation shielding on-board the International Space Station will support that task. HRP will also deliver a design tool to assess advanced radiation shielding on space vehicles. The Advanced Exploration Systems (AES) Program will develop and demonstrate prototype systems for life support, habitation, and extravehicular activity (EVA). Lightweight multifunctional radiation shielding will find application in the commercial sector in reducing collateral damage from heavy charged particles currently emerging as a therapeutic approach in nuclear medicine. The shielding will lead to decreased fatigue among medical personnel required to wear heavy protective garments during radiological procedures. Workers in industrial facilities using radiation for materials processing and in nuclear power facilities will also benefit from more-comfortable garments having reduced weight and thermal stress. The Departments of Defense and of Homeland Security applications include protection of soldiers, first responders and emergency medical personnel against high energy gamma radiation and neutrons resulting from so-called dirty bombs as well as from hazards brought about through accidental release of radiological materials. The uses of continuous monitoring of arrays of in-situ radiation sensors include evaluation of degradation of p
More »