Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

SPHERES Mars Orbiting Sample Return External Orbiting Capture

Completed Technology Project

Project Description

SPHERES Mars Orbiting Sample Return External Orbiting Capture
NASA's Mars Sample Return (MSR) mission scenario utilizes a small Orbiting Sample (OS) satellite, launched from the surface of Mars, which will rendezvous with an Orbiter/Earth Return Vehicle (ERV). When the radio beacon-equipped OS is within range of the ERV's optical sensors, the ERV will optically track and approach the OS, maneuvering itself to place the OS within its capture device. One of the key technologies required to accomplish this mission involves a low-mass, highly reliable mechanism that detects contact with and captures the OS, and, once the OS is captured, moves the OS to a containment area for the return trip to Earth. There is an on-going body of research into such capture mechanism designs and the various advantages and challenges of these technologies. Aurora Flight Sciences and its research partner, the Massachusetts Institute of Technology (MIT) Space Systems Laboratory (SSL), propose to develop a flight-quality OS-detection and capture mechanism design based on research data and experience with the Mars Orbiting Sample Retrieval test bed and develop a risk-mitigation strategy that utilizes the International Space Station as a system checkout and launch platform for system testing in Low Earth Orbit (LEO). This proposal leverages the state-of-the-art research into sample capture mechanisms, contact dynamics and capture mechanism detection methods and builds on the team's experience with the Synchronized Position, Hold, Engage, and Reorient Experimental Satellites (SPHERES) system to develop a low cost, LEO test strategy that minimizes the risk for later Mars deployment. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.