Skip Navigation

Instrumentation For Multiple Radiation Detection Based On Novel Mercurous Halides For Nuclear Planetology, Phase II

Active Technology Project

Project Introduction

Radiation detectors that sense gamma and neutron radiation are critical to the exploration of planetary surface composition. Among the key technological challenges is to have a suitable detector that not only can be used for both gamma ray and neutron detection, but also satisfy the many highly desirable and essential for spaceflight properties: good energy resolution, high efficiency, high radiation tolerance, low power consumption, low volume, low weight and operation without cryogenic cooling. We propose a room temperature semiconductor detector (RTSD) using a single material that can detect both gamma radiation and neutron particles. The novel materials we propose are mercurous halides, Hg2X2 (X=Cl, Br) - mercurous chloride (Hg2Cl2) and mercurous bromide (Hg2Br2). The development of these spectroscopy grade mercury halide-based radiation detectors are especially relevant to future NASA missions to any solid body in the solar system, including the Moon, terrestrial planets, asteroids, comets, and the moons of the other planets. Our goal is to deliver a breakthrough in detector technology that can lead to spectrometers that are capable of performing both gamma and neutron spectroscopy. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas