NASA can use this system to prospect for mining that will support Mars exploration missions. It can also use the system for any planetary exploration when there is a known water resource close to the surface. It can be used to explore the Moon, Near Earth Asteroids, Main Belt Asteroids including protoplanet Vesta and dwarf planet Ceres, Mars, Europa, Titan, etc. A water-based cold-gas propulsion system is planned for development by the KSC Swamp Works for the Extreme Access vehicle, so all the progress made here will directly help NASA advance that project. Mars mission architects will see the reality of space-mined water and begin to build it into their architectures. Investors in commercial space activity will see that asteroid mining is real, and that transporting spacecraft from LEO to GEO is a viable business worthy of funding, which will create customers for space mining. Space mining companies may also gain investors and make more progress that furthers the confidence of NASA mission architects. Establishing a testbed for these activities in Space Station will result in great interest from the public, greater awareness of the reality that space industry will solve problems on Earth, and ongoing support from policymakers and NASA decision makers to advance the relevant technologies via Space Station. It may also advance the vision of utilizing Station for additional space mining and space industry activities.
The system could be used by several commercial companies that are interested in In Situ Resource Utilization for financial gain. These include Planetary Resources and Deep Space Industries targeting asteroids. Bringing water from the asteroids could be very profitable given that launching water from space costs ~$20,000/liter. The major market for water could be human consumption and radiation shielding (e.g. once Bigelow Space Hotels are established) or refueling of existing satellites. The latter is of particular interest, since satellites come to the end of their life not because of electronics, or power, but because there are running out of fuel for station keeping. NASA and industry have been developing in space refueling technology, the first step in enabling refueling of satellites in space. The technology could also be applied to the Moon and used by Shackleton Energy Corp., company interested in mining water and delivering it for refueling spacecrafts at Geostationary Orbit and Geotransfer Orbit. The International Space University 2012 Summer School demonstrated the commercial viability of boosting spacecraft to Geostationary Orbit via water-based propulsion. With the advent of small satellites (nanosats and CubeSats) one can imagine that these satellites could be able to stop at an asteroid, refuel, and continue exploring.
More »