Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion

Completed Technology Project
412 views

Project Description

Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion
Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space science, communications, and surveillance. However, the operational flexibility of these vehicles is limited by the performance of the propulsion system. In gas turbine systems low temperatures and pressures at the combustor inlet are of concern for combustion stability and efficiency at high altitudes. The overall objective of the proposed work is to assess the feasibility of developing a high performance airbreathing combustor for hydrogen-fueled very high altitude aircraft by promoting stable combustion using thermally stable catalytic reactor technology. Our combustor concept baselines the use of strontium-substituted hexaaluminate catalyst supports, which are resilient to temperatures greater than 1500 K. In Phase I an active catalyst that provides high reactivity with hydrogen at representative conditions will be identified through laboratory testing. An empirical model of catalyst reactivity will be developed and integrated with a reactor model to produce a conceptual design of a full scale combustor for a defined very high altitude gas turbine system. The catalytic rector that will be developed through this effort represents a new, enabling technology that will dramatically increase the flexibility of aerospace vehicles. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^