Skip Navigation
SBIR/STTR

Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping, Phase I

Completed Technology Project

Project Introduction

Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping, Phase I
Silicon Carbide deep UV detectors can achieve large gains, high signal-to-noise ratios and solar-blind operation, with added benefits of smaller sizes, lower operating voltages, radiation hardness, ruggedness and scalability. The design, fabrication and optimization of SiC UV APDs is challenging due to some material defects, relatively not-well modeled device operation, and very high absorption coefficients near 100nm wavelengths. These challenges can be overcome with detailed co-modeling, characterization, design and fabrication. Successfully operating SiC UV detectors are of utmost importance for astronomy, space exploration, upper atmosphere monitoring, and systems such as Non-Line-of-Sight (NLoS) communication. Through Phase I and Phase II, we propose to develop Silicon Carbide (SiC) based UV detectors for space applications. The initial target is the 100nm to 300nm wavelength range, with the peak responsivity expected to be within the 200nm-300nm interval. For the 100nm-200nm wavelength range, we will experiment with the use of an AlGaN cap-layer as the absorber and SiC as the multiplier. Phase I effort will focus on the design and detailed physics based simulation of these SiC APD structures. We will use SiC UV detectors fabricated by the GE Global Research Center and AlGaN APDs from University of Maryland for measurements and calibration. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^