The emergence of hydrogen based economy will necessitate the ability to pump and compress large amount of hydrogen. A range of EHPC products with an EMA cell design will facilitate a hydrogen economy by delivering hydrogen to fueling stations and providing the compression for vehicular refueling. Assuming the adoption of a pipeline hydrogen based infrastructure, there is a need to pump the hydrogen along the pipeline to the fueling stations. A medium to large size fueling station would require 300 lbs per day of hydrogen, which at 500 psi is 1,730 cf. A 30 CFM EHPC system, would allow a fueling station to store a day's worth of fuel in 2 hours. Hydrogen powered vehicles require hydrogen at 6,000 10,000 psi to facilitate efficient volumetric storage. Sustainable Innovations' cell hardware has already demonstrated a Compression Ratio (CR) of over 400, which is significant greater the then CR of 20 needed to compress hydrogen from 500 psi to 10,000 psi. Therefore a EHPC system with a EMA cell design and a large flow rate capacity would be a invaluable tool in the developemnt of a hydrogen based economy.
An Electrochemical Hydrogen Pump & Compressor (EHPC) using an EMA cell design is applicable to several NASA applications. For extraterrestrial in situ resource utilization the EHPC will be able to handle the flow rates, 6 CFM, needed to recirculate hydrogen and facilitate pneumatic transport. Terrestrial NASA applications include capturing, purifying and compressing purge gas for various experimental rocket test stands. In extraterrestrial applications it is envisaged that the EHPC variable footprint will allow construction to conform to geometric constraints of a spacecraft. In addition, the simplicity of the systems balance-of-plant, a regulated power source, and the proven high reliability of electrochemical based devices means that redundant units may not be needed. The EHPC technology would add a key tool to NASA ability to move and store hydrogen efficiently and safely in extraterrestrial environments. A large amount of hydrogen used during testing of rocket engines and other space systems is wasted due to cryogenic boil-off loses and pre-test purging. The ability to efficiently capture, purify and compress this hydrogen for reuse, relies on handling large flow rates. Very large cell active areas are needed to meet this need. The EMA cell design facilitates the building of a large scale EHPC to recycle hydrogen. This will be economically beneficial to NASA while lowering the carbon footprint of NASA testing.
More »