Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Radiation-Tolerant Vertical-Cavity Amplifying Detectors for Time-of-Flight Laser Rangefinders

Completed Technology Project
455 views

Project Description

Radiation-Tolerant Vertical-Cavity Amplifying Detectors for Time-of-Flight Laser Rangefinders
The harsh radiation environment anticipated during the Europa Jupiter System Mission (EJSM) presents a significant challenge to develop radiation-hardened notional instruments. A high-performance, radiation-tolerant detector is required for the time-of-flight laser altimeter system on the Jupiter Europa Orbiter (JEO), which will perform critical characterization of Europa's topography, ocean tides, and ice shelf. Avalanche photodiodes (APDs) are conventionally chosen as detectors for standard laser altimeter systems. However, the performance of APDs degrades significantly after exposure to high levels of radiation. Aerius Photonics proposes to develop a novel radiation-tolerant detector that is suitable for use in space-based laser-altimeter systems by integrating a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA) with a PIN photodetector. The resulting device, known as a Vertical-Cavity Amplifying Detector (VCAD), is expected to provide high-gain, high-speed, low-noise detection and demonstrate significant improvements in radiation tolerance over APDs. The optical preamplification provided by the VCSOA, along with its operation as a forward-biased majority-carrier device, renders the VCAD system insensitive to radiation-induced increases in detector dark current noise and receiver electronics noise. The VCAD is also expected to be significantly less susceptible to single event transients (SETs) than an APD. Aerius Photonics has expertise in VCSOA development and has already demonstrated basic radiation tolerance of VCSOAs to 300 krad with gamma radiation and to 300 krad with 63 MeV protons. In Phase I of this program, Aerius will design, fabricate and characterize VCADs that have been exposed to a more comprehensive radiation test plan that will include conditions anticipated on the EJSM. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^