Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Antimony-Based Focal Plane Arrays for Shortwave-Infrared to Visible Applications

Completed Technology Project
482 views

Project Description

Final Summary Chart Image
We propose to develop antimony-based focal plane arrays (FPAs) for NASA's imaging and spectroscopy applications in the spectral band from visible to shortwave-infrared (SWIR), viz. wavelengths from 0.5 - 2.5 microns. We will leverage recent breakthroughs in the performance of midwave and longwave infrared FPAs based on the InAs/GaSb/AlSb material system in which QmagiQ has played a key part. In these spectral bands, this novel sensor already offers performance comparable to mercury cadmium telluride (MCT) but at a fraction of the cost due to the leveraging of commercial growth and process equipment. Our goal is to extend that benefit into the shortwave infrared. Using the best material currently available and a novel bandgap-engineering design and process, we will fabricate FPAs and measure how the antimony-based sensor compares to state-of-the-art shortwave MCT in terms of quantum efficiency and dark current. In Phase I, we developed the basic building block - a high-performance SWIR photodiode. In Phase II, we will develop FPAs in a variety of formats and deliver them to NASA for evaluation for its astronomy and planetary missions. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^