Skip Navigation
SBIR/STTR

Development of a Cathode Liquid Feed Electrolyzer to Generate 3,600 psi Oxygen for Both Lunar and Space Microgravity Environments, Phase I

Completed Technology Project

Project Introduction

Development of a Cathode Liquid Feed Electrolyzer to Generate 3,600 psi Oxygen for Both Lunar and Space Microgravity Environments, Phase I
Giner Electrochemical Systems (GES) proposes to develop a cathode liquid feed, proton-exchange membrane electrolyzer stack and system capable of producing 3,600 psi oxygen. In preparation for this Phase I effort, we propose to collaborate with Hamilton-Sundstrand Human Space Systems (H-S) to share unique state-of-the-art technologies that provide the best path to meeting program objectives. GES will share their data and expertise with high balanced pressure electrolyzers and H-S will contribute their data and expertise in high differential pressure electrolyzers. Based on this exchange, GES would modify its electrolyzer performance model. In a third task, GES will build two single cell electrolyzers with GES and H-S components. One stack will be dedicated to balanced pressure operation, while a second unit would be dedicated to high differential pressure (oxygen over hydrogen) operation. A full experimental matrix will be conducted on these units in a cathode liquid feed configuration. Balanced pressure operation would be conducted at GES facilities (from atmospheric to 2,000 psi). Differential pressure testing would be conducted in H-S facilities (at pressures between 2,000 and 3,600 psi). Data would then be integrated into the GES analysis code, and be available as a design analysis tool for future phases of the program. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^