Skip Navigation
SBIR/STTR

High Channel Count Time-to-Digital Converter and Lasercom Processor, Phase II

Active Technology Project

Project Introduction

High-channel-count, high-precision, and high-throughput time-to-digital converters (TDC) are needed to support detector arrays used in deep-space optical communications (DSOC) link receivers being developed between Earth and deep-space solar-system exploration platforms for human and robotic activities in 2020 and beyond. Compared to current radio-frequency (RF) space communications, DSOC will provide 10- to 100-times more data returns for future advanced instruments, live high-definition video, telepresence, and human exploration beyond cislunar space. To be accepted operationally, the optical link must provide substantially greater data rates/data-return volumes than equivalent mass and power RF systems and at lower cost per bit. Therefore, to prepare for these deep-space missions, substantial enhancement of the current NASA telecom-link capacity is needed. To satisfy NASA's DSOC needs, a scalable high-precision (≤ 100 ps), high-throughput (> 100 Gbps) high-channel-count (≥ 256) time-to-digital advanced processor (HiTAP) architecture will be developed for use in single-photon-counting free-space optical communications systems and test beds. In Phase II, two fully functional systems integrating custom hardware, firmware, and software will be designed, fabricated, tested, and delivered to NASA. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^