The proposed technology is closely aligned with several current NASA research areas. One example is the Unmanned Aerial System Traffic Management (UTM) effort, one of the stated goals of which is to "enable safe and efficient low-altitude airspace operations by providing services such as...dynamic geo-fencing". The proposed research effort will provide a highly assured geo-fence enforcement capability that can readily accommodate dynamic boundaries. The system will also be able to provide rapid feedback when a specific boundary change will lead to a geo-fence violation given the current vehicle states, and an estimate of how long it will be before the vehicle can comply with the new boundary. The proposed research effort would also complement work such as the SAFEGUARD effort at NASA Langley, which is developing independent monitoring hardware and geo-fence enforcement capabilities. The proposed work will complement NASA efforts by providing rigorously defined switching boundaries and a robust maneuver capability to guarantee fixed wing-aircraft remain in the geo-fenced area without unnecessarily constraining maneuvering near the boundary. The proposed technology also offers potential value as a safety system for NASA's research flight test activities. The non-NASA commercial applications of the proposed technology are enormous. By August 2015, the FAA had issued over 1000 authorizations to operate UAS through the Section 333 Exemption process, and in just the last two weeks of January 2016, the FAA issued over 80 additional authorizations. This demonstrates that the UAS market is already substantial and is growing very rapidly. UAS operators need effective technologies, such as that currently proposed, to ensure a high level of safety. The rapidly increasing number of organizations offering commercial UAS services also means that cost competition is likely to be intense, and operators will have to be efficient to be successful. With the cost of vehicles and the operating cost per hour already fairly low, especially compared to manned aircraft, reducing labor costs is a compelling strategy for providers of UAS services to remain competitive. The proposed technology will help to reduce labor costs by reducing the required level of human oversight, allowing a single human operator to conduct operations with a focus on mission management, rather than requiring two people, one to manage the mission and one to maintain eyes on the vehicle and provide backup control. Ultimately, the proposed technology will help to enable one operator to control multiple vehicles and conduct beyond line of sight operations, for enhancing efficiency and operational flexibility.
More »