Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Advanced Aqueous Phase Catalyst Development using Combinatorial Methods

Completed Technology Project

Project Description

Advanced Aqueous Phase Catalyst Development using Combinatorial Methods
Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents from current and future primary wastewater treatment processes at temperatures less than 70aC, pressures below 20 psig, and contact times under 30 minutes. The Phase II effort will build upon the successful Phase I feasibility demonstration and identify rate-limiting factors for contaminant oxidation identified in the best Phase I AOCs. A new series of combinatorial catalysts will be prepared with the goal to systematically improve catalyst performance. Improvements will focus on contaminant and reaction byproduct adsorption, mass transfer resistances, and reaction rate limitations associated with noble metal concentration, dispersion, and support interaction. A second-generation combinatorial library with 102 AOCs will be prepared based on this analysis. Oxidation activity will then be compared using a difficult to oxidize ersatz solution containing contaminants known to occur in the current U.S. water processor aboard the ISS. These tests will select the best AOC based upon analysis of oxidation kinetics. This AOC will undergo long-term testing to verify performance. Scale-up activities will follow, resulting in a full-scale, deliverable prototype. The advanced AOC will lower water processor ESM and provide multiple commercial opportunities. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.