Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Robotic ISRU Construction of Planetary Landing and Launch Pad

Completed Technology Project

Project Description

Robotic ISRU Construction of Planetary Landing and Launch Pad, Phase I
The Apollo 15 Lunar Module rocket plume excavated regolith which sandblasted at speeds in excess of 1000 m/s the Surveyor 2 lander 200 m away. A Curiosity rover instrument was permanently damaged during SkyCrane landing on Mars. Any future human surface missions to planetary bodies covered in regolith (e.g. Mars, Moon) would need to address ejecta created during landing or takeoff. The intent of this project is to develop a fully robotic system for building landing pads on planetary bodies. The system will excavate in-situ regolith, sort rocks according to needed particle sizes, and layout a carefully designed landing/launch pad apron to lock in the small regolith particles. To that extent, Honeybee/MTU propose to design and build a robotic tool to perform the following 3 actions: Pick up or excavate rocks, sort the rocks in three size ranges, and deposit said rocks in three layers with the purpose to stabilize the fine regolith in the secondary apron zone of Lunar and Martian landing pads for repeated landings and take-offs. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.