Skip Navigation
SBIR/STTR

Radiation Induced Fault Analysis for Wide Temperature BiCMOS Circuits, Phase I

Completed Technology Project

Project Introduction

Radiation Induced Fault Analysis for Wide Temperature BiCMOS Circuits, Phase I
State of the art Radiation Hardened by Design (RHBD) techniques do not account for wide temperature variations in BiCMOS process. Silicon-Germanium BiCMOS process offer inherent advantages for operation in radiation environments where single event transient and total iodization dose effects on the circuit are important. Recent access to libraries of wide temperature and RHBD BiCMOS designs provide the reference data for developing radiation aware automation design automation. Lynguent's efficiency gains in compact model composition have enabled radiation domain experts to transfer observed radiation effects from TCAD simulators into the commercial circuit simulators. These compact models are augmented with radiation effects such as the ISDE 90 nm Bulk CMOS Bias Dependent Charge Sharing SET Effect. These rad-aware models are used within the LynRad Fault Analyzer, taking into account circuit schematics, layout and cosmic ray scenarios. Extending this design automation to a BiCMOS AMS designs is the logical next step in establishing radiation awareness over wide temperature. Previous investigations were limited to circuits with a small number of transistors that could be simulated in mixed TCAD-SPICE environments. Consequently, scaling the LynRad Radiation Fault Analyzer to larger, more complex AMS circuits is a key aspect of this investigation. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^