Skip Navigation
Space Technology Research Grants

Corrugated Two-dimensional Material Enabled Flexoelectricity for Cryogenic Actuator Technology

Active Technology Project

Project Introduction

Corrugated Two-dimensional Material Enabled Flexoelectricity for Cryogenic Actuator Technology
Next generation cryogenic actuator technology (CAT) calls for a wide range of operating temperatures from -296 °C (liquid He) to 116 °C (max on moon surface). Achieving such a wide range is challenging for conventional piezoelectric actuators as at low temperatures, piezoelectric coefficient will drastically decay and at high temperatures (near the Curie temperature), the devices will be depolarized and completely inoperable. These performance degradations are especially problematic for conventional polycrystalline piezoelectric materials. The objective of this proposal is to advance NASA’s CAT capability by creating a novel actuator based on the converse flexoelectric behavior of corrugated molybdenum disulphide (MoS2) thin films. The flexoelectric CAT (FCAT) will enable improvements to performance, reliability, and lower mass/volume for next generation CAT applications. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^