Skip Navigation
SBIR/STTR

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase I

Completed Technology Project

Project Introduction

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase I
Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image sensors are used for different spectral sub-bands: GaN for UV, Si for visible, and InGaAs for SWIR, requiring expensive component-level integration for hyper-spectral imaging. Also, the size of the InGaAs focal plane arrays is currently limited by the InP substrate area. We propose a GaAs/InGaP/InGaAs based photodiode on standard GaAs substrates for large-format (4096 x 4096) focal plane arrays with the following characteristics: (1) Wavelength = 0.25 to 2.5 micron; (2) Quantum Eficiency > 30% in UV (0.25 to 0.4 micron), > 80% in Visible (0.4 to 0.9 micron), and > 70% in IR (0.9 to 2.5 micron) subbands; (3) Photodiode Area (single element) = 15 x 15, 25 x 25, and 50 x 50 micron square; (4) RoA > 35 Ohm-cm^2 at 300K; and (5) Bandwidth > 1 GHz. Additionally, feasibility of UV-to-SWIR graded optical filters will be investigated. Based on P.I.'s experience on SCIAMACHY, this project will enable one image sensor for 8 spectroscopic channels currently orbiting on European Space Agency's ENVISAT. Also, feasibility of large-format image sensors on GaAs substrates will be demonstrated. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^