The technology to be developed in this program will find application in Air-force propulsion system externals like actuators, pumps, and starters, weapons ejection, fuel transfer, lighting, avionics, RADAR, landing gears & breaks, steering, powered doors and ramps, gun drives, anti-icing, environmental control and auxiliary emergency power systems. The realization of a high power density switchmode power supplies and DC-DC conversion circuits will benefit Army's Future Combat System (FCS). An electric and hybrid vehicle technology directly affects the M113 APC, Bradley infantry fighting vehicle, HMMWV, 5-ton M939A1 truck, AAAV, 50-ft personnel boat and a more electric aircraft by making them highly deployable, sustainable, survivable, lethal and affordable. An integrated electric power system made using SiC high power devices will increase component placement flexibility within vehicles, double fuel economy by continuously operating smaller engines under optimum conditions, and reduce armor protected volume. It will also enable increased acceleration and maneuverability due to immediate torque to the wheels or tracks, reduce vehicle thermal and acoustic signatures and reduce system cost and logistics requirements. Commercial switchmode power supplies used in computer power supplies, cellular phone base station power supplies, consumer electronics, lighting applications, and robotic and motor control applications will also benefit from the development of such components
Drive and control electronics for motors in the next generation robotic systems such as rovers have to be directly placed on the motor housing. Integration of 500 oC capable power electronics with the motor enables creation of distributed actuator systems with significantly reduced interconnects and wiring. Furthermore the motors and actuators have to be placed on the extremities of the robotic systems and are exposed to environmental parameters such as large temperature changes (-125 oC to 450 oC in the case of Venus, up to 350 oC for Jupiter). The motor sensing electronics consists of a position sensor, digitizer, digital controller and digital to analog converter. The actuator drive consists of power switching devices that are configured in an H-bridge that is connected to the digital controller through pre drivers and buffers. For DC-DC converters, power ICs developed in this program connects power sources in a wide variety of NASA mission systems with power sources as Solar arrays, Brayton rotating unit, stirling radioscopes, and fuel cells with various loads like electric propulsion, communications systems, instruments and actuators. A power IC is also the building block for the interface between energy storage devices like batteries and flywheels with the energy sources and loads. Switchmode power supplies improved by high frequency, high temperature power switch is critical for NASA synthetic aperture RADAR's (SAR) antenna array T/R modules.
More »