Glancing incidence optics are used in a variety of applications including synchrotron beam lines, extreme UV lithography, and x-ray spectroscopy for chemical analysis. The technology for producing such optics for commercial systems has not changed significantly over the past century, nor has the quality. The very few companies that have the capabilities to produce such components have caused the price to remain high as compared to standard flat or spherical components. Breakthroughs in low cost manufacturing of high quality x-ray optics will open new applications in this region of the electromagnetic spectrum.
Achievements in space borne astronomy made over the past four decades have been driven by many factors, which include advances in optical manufacturing. The next generation of space astronomy will require even greater technological breakthroughs to produce telescopes of far lower areal density at far lower cost per square meter. Advanced x-ray telescopes such as IXO and GenX, using nested Wolter Type 1 designs will require thousands of thin shell mirror segments produced by replication using convex mandrels. Segmented mirrors are candidate designs for the ATLAST Program, having a primary mirror diameter of 8 to 16.8 meters. Scientific instruments aboard these telescope payloads will certainly include optical components and structures that will drive further advancements in manufacturing technology. The technical effort proposed here has clear potential to benefit these and other future space astronomy programs by improving the performance and lowering the cost of precision optical components.
More »