Small stroke, high precision deformable mirrors and associated drive electronics have a few commercial applications. The decrease in size, power and cost affect many of the vertical markets to which we currently supply our products. Space surveillance:BMC has success developing arrays up to 4096 elements for astronomy which can be used for space-based systems. Decreasing the size and weight of the electronics reduces payload, a high priority of satellite programs. These programs are funded by Department of Defense administrations with classified agendas. Unmanned Aerial Systems:In unmanned aerial systems, adaptive optics can enable improved battlefield performance. Images can be obtained that are more informative for reconnaissance purposes. By implementing multiplexed drive electronics, this can be implemented on smaller vehicles. Microscopy:Adaptive optics can increase resolution in confocal and optical microscopes. Specific modalities include two-photon excitation fluorescence(2PEF), coherent anti-stokes Raman spectroscopy(CARS), scanning laser ophthalmoscopy(SLO) and optical coherence tomography(OCT). Multiplexed drive electronics can reduce the component cost of the system and enable more users to purchase high-resolution equipment for cutting-edge science. Optical communication: Fiber optic communications systems are the primary beneficiaries of this new electronics architecture which can take advantage of our devices in an optical switching enhancement capacity.
Multiplexed drive electronics introduce a few very important and enabling advantages for NASA commercial applications in planned space-based telescopes and coronagraphs. The key commercial advantages to the systems to be produced in this work are: 1) their hundredfold improvement in power efficiency is a critical enabler for space-based operation; 2) their design is specifically suited to drive tip-tilt-piston MEMS DMs already developed by BMC for NASA, and is to our knowledge uniquely capable of achieving the 10pm precision required for the visible nulling coronagraph; and 3) the cost to produce the drivers proposed will be less than that of existing drivers for MEMS DMs in use by NASA, despite its substantial improvements over the state-of-the-art in compactness, power management, and precision. These compelling features, along with highly successful Phase I results, promise to make the proposed hardware commercially attractive to NASA for various space-based applications. BMC's track record of success with DM sales to NASA and to dozens of astronomical and space science institutions around the world bodes well for the ultimate commercial viability of the Phase II research outcomes.
More »