Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

LunarCube for Deep Space Missions

Completed Technology Project

Project Description

Final Summary Chart Image
Busek, in partnership with Morehead State University (MSU), proposes to develop a versatile 6U CubeSat capable of reaching a lunar orbit from GEO. The primary objective of the Phase II effort is to demonstrate a complete, mini ion propulsion system that provides ~3000sec Isp heretofore unavailable to CubeSats, with a solid-storable iodine propellant. This type of propulsion technology would be a huge mission enabler and ideal for volume-limited satellites such as CubeSats. The 6U bus, combined with ion propulsion, has already shown being highly attractive to science payload developers targeting the upcoming SLS/EM-1 lunar mission. During Phase I Busek successfully demonstrated the world's first iodine-fueled gridded ion thruster "BIT-3". Key performance characteristics of BIT-3 include a compact design envelope (2.8km/s delta-V to a 6U/12kg CubeSat. The ultimate goal of the LunarCube program is to undertake a mission to the Moon from GEO or a translunar trajectory (such as the EM-1 drop-off) that would demonstrate the propulsion system, and carry out a lunar science program as a capability demonstration of the platform. During this mission, a related goal is to demonstrate that much of the spacecraft's miniature electronics, primarily C&DH, communications, and the propulsion system's PPU can be based on low cost components and survive the harsh deep-space environment. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.