Phoebus's metamaterial films are an enabling technology with a variety of potential applications spanning multiple device types and industries. With relatively minor adjustments to their dimensions, geometries and material composition, Phoebus's metamaterial films can elicit extremely diverse light-management phenomena, ranging from wavelength filtering, polarization filtering and polarization beam splitting to light localization, focusing, circulation, weaving and trapping. Phoebus has developed a disciplined device development pipeline, which includes i) terrestrial polarimetric infrared sensors for improved target discrimination ii) antireflective invisible electrodes for silicon solar cells and iii) a solar biofuel platform capable of generating methanol from carbon dioxide. The total combined annual value of the targeted markets exceeds $100 billion. Phoebus is adopting an intellectual property (IP) licensing business model in which it will develop devices to their prototype stage prior to licensing the technology to device manufacturers. We have already established relationships with leading infrared sensor manufacturers and have begun preliminary collaborations around the commercialization of our polarimetric sensors for military imaging. Our collaborators estimate that our device designs will lead to at least 2500x performance improvements, while simultaneously reducing prices through component integration. The proposed project will lead directly to commercialization of polarimetric sensors ideally suited to NASA's upcoming ACE and CLARREO missions and VIIRS NPP project. Through knowledge gained about theoretical modeling and fabrication methodologies, the project may also lead to other photonic devices of use to NASA. For example, the light-concentrating abilities of Phoebus's recently designed metamaterial Fresnel zone plates are well-suited to creation of pixel-sized microlenses, to be fabricated atop IR focal plane arrays. Such devices improve sensitivity of space-based imaging and remote sensing systems by enabling smaller, lower-noise detector elements without loss of light-gathering power while simultaneously reducing system mass. Fabry-Perot interferometers are currently used as narrowband wavelength filters for select remote sensing and astronomy applications. By tapping into very narrow bandwidth light-circulating modes, Phoebus's could also improve on current devices by providing even narrower bandwidths with a simpler, lighter and lower-cost device.
More »