Skip Navigation
SBIR/STTR

Rad-hard Location and Attitude Module (R-LAM), Phase I

Completed Technology Project

Project Introduction

Rad-hard Location and Attitude Module (R-LAM), Phase I
R-LAM (Rad-hard Location and Attitude Module), promises a new generation of both integrated navigation modules and stand-alone navigation subsystems including nav-grade IMU's, atomic-precision clocks and GPS units compliant with the Space Plug and Play Architecture (SPA) initiative. R-LAM leverages two active DARPA MTO programs. In the Navigation-Grade Integrated Micro-Gyroscope (NG-IMG) project, Archangel Systems, Inc. has developed a MEMS IMU called NG-MARS - a spinning mass IMU with navigation-grade performance. In DARPA's Chip-Scale Atomic Clock (CSAC) program, Symmetricom, Inc has developed a clock that is 50-100X smaller and lower power than any previous atomic clock technology, while exhibiting short-term stability of y(τ) < 1x10-10/1/2 and long-term drift of < 3 x 10-10/month. NASA-Goddard has constructed a rad-hard GPS called Navigator for the Magnetospheric Multiscale (MMS) program. Designed for high elliptical orbits (HEO), Navigator uses NASA's Geon algorithms. Currently Navigator weight and power exceeds R-LAM requirements. NASA-Goddard colleagues will advise the R-LAM team as they transition Navigator hardware. Intrinsix Corp. is an ASIC design house skilled in rad-hard mixed-signal design. They will implement rad-hard support electronics for NG-MARS, CSAC and Navigator. Intrinsix is familiar with NASA's SPA initiatives and will design the R-LAM interface for compliance. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^