Skip Navigation
SBIR/STTR

Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion, Phase I

Completed Technology Project

Project Introduction

Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion, Phase I
Microcosm, in conjunction with the Scoprius Space Launch Company (SSLC), will develop a Unibody Composite Pressurized Structure (UCPS) for in-space propulsion that constitutes a clean break from traditional spacecraft design by combining what were traditionally separate spacecraft primary and secondary support structures and metal propellant tanks into a single unibody, all-composite construction that is stronger, much lighter weight, more robust and reliable, and capable of supporting much higher pressures and smaller volume than previous approaches. The single, all-composite structure will include linerless, high-pressure propellant tank(s), composite bosses, flanges, longitudinal and circumferential stringers with integral shelves, holding mechanisms, and attach features to support all of the spacecraft equipment and replace the separate, mission-critical primary support structure, tanks, struts, straps, braces, clamps, and brackets traditionally required to hold subsystem parts in place. The new structure has nearly 0 CTE over a temperature range from cryogenic to over 100 C. Phase I will determine requirements, create a preliminary UCPS design relevant to a potential SMD mission, and test material compatibility with various in-space propellants. Phase II will build two UCPS structures employing test masses for spacecraft components, and complete qualification and burst testing on one of them (including 0-g testing). More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^