Low dropout regulators are ubiquitous in commercial consumer electronics and automotive systems. A non-hardened version of the regulator we are proposing to develop will be inexpensive to manufacture using high volume commercial CMOS foundries. Our business models suggest that such a component can be manufactured at a cost per die that is competitive with existing products but without the need for an external compensation capacitor thereby reducing the overall costs and part count of the power management system. If this is confirmed our regulator component has the potential for widespread commercial adoption. Other non-NASA commercial applications of our patented transistor technology include low power transceivers for medical implants that use the FCC approved MICS band as well as for data telemetry within the Industrial, Scientific & Medical (ISM) bands. Our MESFET technology is capable of higher voltage operation than the CMOS transistors making it very suitable as the input/output device in commercial ASICs such as those offered by Honeywell and our other Phase 3 commercialization partners.
Radiation tolerant low dropout regulators capable of operating in extreme environments with fewer external components will be of widespread use to NASA missions that target the moon, Mars and Europa. The LDO regulator is a key component in most power management systems including point-of-load supplies. By developing power management components for wide temperature range operation (-180C to +150C) we are enabling missions that will benefit from components mounted directly in the Lunar and Martian environments i.e. outside of any thermally controlled warm box. These components will also be of use in missions to Venus that employ environmental chambers with temperatures controlled to >10V. NASA faces challenges with component obsolescence due to the reduction in supply voltage of application specific integrated circuits (ASICs) with each new CMOS generation. Our MESFET component has the potential for extending the life of an ASIC product without the expense of a complete re-design.
More »