Skip Navigation
SBIR/STTR

High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems, Phase I

Completed Technology Project

Project Introduction

High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems, Phase I
Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming (DBF) systems that are used in NASA's future radar missions. The ADC will employ a novel combination of time interleaving, high-speed bipolar technology and low-power techniques, such as the double-sampling technique, providing exceptional sampling speed of 500 MSPS,12 bits of resolution and very low, 100mW power dissipation. Ordinarily, ADC design requires large trade-offs in speed, resolution, and power consumption. The significance of this innovation is that it simultaneously provides a high-speed, high-resolution, and low-power ADC that is well ahead of the state-of-the-art. These three characteristics are needed for DBF systems that contain large ADC arrays. The power consumption of existing ADC chips prohibits implementation of large DBF arrays in space. Ridgetop's innovative design leverages newer semiconductor process technologies that combine silicon and germanium into a compound semiconductor. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^