Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

In Situ Metrology for the Corrective Polishing of Replicating Mandrels

Completed Technology Project

Project Description

In Situ Metrology for the Corrective Polishing of Replicating Mandrels
The International X-Ray observatory (IXO) is due to be launched in 2021. The core of the instrument is a very large (3.2 meter diameter) Wolter I optic, to be assembled from approximately 13,000 individual elements. Each element will, in turn, be created by 'slumping' glass over a precision mandrel, of which there must be in excess of 700. In addition to the very large size of the mandrels (up to 1.6 meter radius), figure and size tolerances are exceedingly tight, ranging from 2 nanometers (axial figure) to 200 nanometers (radius variation). The combination of size, accuracies, production rate requirements and the number of individual component designs defy standard optical metrology techniques. While polishing equipment that can meet these tolerances exists, the polishers must be controlled by continuous or near continuous (process intermittent) feedback. In this effort we propose to develop a unique "point-defined" metrology instrument that can be incorporated into the polishing machine itself, to control the manufacturing process to the required levels of accuracy. In Phase 1 we will develop conceptual designs for both stand-alone and on-machine instrumentation. In Phase 2 we will develop a stand-alone metrology instrument, and in Phase 3 we will fully incorporate the technology onto a commercial polishing instrument. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.