Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase II

Completed Technology Project

Project Introduction

Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase II
While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources typically lack the ultra-narrow (<50 kHz), ultra-stable output spectrum required for use in applications such as Doppler shift measurements of the tropospheric winds. Furthermore, similar sources which operate at 2.0 microns (a preferred wavelength for space-based atmospheric measurements) are simply unavailable. Based on promising results obtained under NASA Phase 1 SBIR funding, nLight proposes the parallel development of 1.5 and 2.0 micron injection seeding sources based on our well-established, wavelength-scalable, industry-leading InP semiconductor laser design. Optical feedback provided by external volumetric or fiber Bragg gratings serves to narrow the semiconductor linewidth to the appropriate level. If necessary, further linewidth reduction can be achieved by means of electronic feedback circuitry. The line-stabilized diode lasers will be integrated with nLight's exiting space-qualified (space flown), hermetically-sealed, compact single-mode diode package, efficiently coupled to single mode fibers, and delivered to NASA. More »

Primary U.S. Work Locations and Key Partners

Technology Transitions

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^