Skip Navigation
SBIR/STTR

Application of Zeeko's Novel Random Tool Path for Improvement of Surface PSD, Phase I

Completed Technology Project

Project Introduction

Application of Zeeko's Novel Random Tool Path for Improvement of Surface PSD, Phase I
A well known problem in the fabrication of aspheric optical surfaces lies in surface irregularities inherent in the figuring process. Low-spatial frequency errors (figure errors) cause distortion in the system wavefront, resulting in degradation of the point spread function. Mid-spatial frequency errors cause small-angle scattering of light (flare), which reduces image contrast. High-spatial frequency errors scatter light out of the optical beam over larger angles, reducing the energy throughput in an optical system. The Zeeko Precessions polishing is a sub-aperture process that has been developed for the control of form and texture in the production of aspheric and other optical surfaces. The Precessions process is deterministic and provides dramatic reductions in production time due to its high removal rate and repeatability. Similar to other sub-aperture finishing processes, the Precessions process is prone to leave mid-spatial frequency defects on the surface. Zeeko has developed a unicursal random tool path that does not follow a regular pattern and is non-crossing. The goal of this Phase I project is to expand on promising initial results obtained by using the random tool path. The results generated by the research project will be used to demonstrate and improve the performance of the Zeeko polisher for this critical application. We propose a study that employs the polishing methodology used by Zeeko Technologies to determine whether trial procedures using the Zeeko approach can effectively correctively finish an optic without inducing unwanted frequencies onto the surface of the part. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^